RSS Feed

 

 

 





 

 

 

 

 

 

 

 Próximos eventos:

 Últimos eventos:

 

 

Login

fotovoltaica

  • La perovskita, nuestra gran aliada en la lucha contra el cambio climático

    4 minutos

    Celulas solares de perovskita fabricadas en el Grupo de Semiconductores Avanzados del Instituto Universitario de Materiales Avanzados de la Universidad Jaume I. GAS-INAM-UJI Author provided

    La energía solar fotovoltaica, que consiste en la captación de la energía solar para ser convertida en electricidad, ha experimentado una gran revolución en las dos últimas décadas con el empleo masivo de un material llamado perovskita.

    Actualmente estamos en la cuarta generación de células solares; así es como se denominan los dispositivos o placas solares en del campo científico.

    La primera generación de células solares está basada en silicio cristalino o policristalino, con una eficiencia máxima del 22 %.

    En las de segunda generación se emplean las llamadas células de capa fina, basadas en elementos como el selenio, zinc, galio, indio, cadmio y estaño.

    En las de tercera generación se utilizaron por primera vez materiales nanométricos para captar radiación solar. En ella se usan compuestos orgánicos absorbedores de luz (células solares de colorante) junto con las células solares poliméricas en las se emplean polímeros conductores.

    La cuarta generación se caracteriza por las células solares basadas en perovskita.

    El auge de las perovskitas

    El empleo masivo de este material comenzó en 2009 en Japón cuando un grupo de investigadores de la Universidad de Tokio empleó una perovskita como material absorbedor de luz. Ya en el primer experimento, los científicos obtuvieron una buena eficiencia de conversión de luz solar a electricidad, de un 3,8 %. Aunque el valor es bajo, para una primera prueba es más que aceptable.

    A pesar del gran resultado inicial, comprobaron que la estabilidad era muy baja. No obstante, aquel fue solo el inicio de una loca carrera hacia lo que es hoy en día una prometedora realidad. En algo más de una década, se ha alcanzado una eficiencia de conversión del 25,5 %.

    Este material ha avanzado en tan solo trece años lo que el silicio tardó cincuenta años en recorrer. Se ha mejorado mucho su estabilidad frente a agentes externos como la humedad y el oxígeno, y la perovskita ya no se degrada en horas. No obstante, todavía falta mejorar el encapsulado final de las células solares para asegurar un larga vida útil del producto final.

    Paneles solares de perovskita. Stanford ENERGY / Mark Shwartz / Wikimedia CommonsCC BY

    Estructura y composición

    Las perovskitas son materiales con estructura química ABX₃, donde A es un catión orgánico voluminoso como el metilamonio o inorgánico como el cesio, B es un elemento metálico como el plomo o el estaño y X es un elemento halogenado, siendo bromo y cloro los más habituales.

    La perovskita nos ha permitido disminuir costes de fabricación. Su síntesis es sencilla y muy rápida, y además se emplean materiales abundantes y baratos. No es necesario emplear temperaturas elevadas de procesado como ocurre en las células solares de silicio y en las de capa fina (primera y segunda generación de células solares).

    Todas estas características de síntesis permiten que la fabricación de un panel solar de perovskita sea mucho más económica que un panel solar de silicio.

    Además, son materiales multifuncionales, absorben luz y son capaces de transportar tanto electrones como huecos. Son muy agradecidos, ya que con pequeñas modificaciones de síntesis se pueden modificar sus propiedades fácilmente. A todo esto hay que añadir los grandes esfuerzos que se están realizando para que sean estables y duraderas.

    Pieza clave del cambio energético

    La perovskita es un material barato y, como en su proceso de fabricación no es necesario emplear altas temperaturas, es posible fabricar las células solares incluso sobre substratos flexibles.

    Al ser nanomateriales con gran capacidad para absorber la radicación solar, los dispositivos finales son ligeros y semitransparentes, ya que no es necesaria una capa gruesa de material. Y debido a la alta eficiencia de conversión energética, incluso en condiciones lumínicas bajas pueden llegar a ser empleadas como ventanas inteligentes en arquitectura y en interiores para suministrar electricidad a los dispositivos móviles que tanto empleamos actualmente, como son los teléfonos inteligentes, portátiles, etc.

    Y por si todo esto fuera poco, la perovskita aun nos ha sorprendido una vez más. No solo se presenta como un sustituto del silicio, sino también como un aliado. Al unir ambos materiales se ha podido alcanzar una eficiencia de conversión del 29,15 % y más de 300 horas de funcionamiento, muy cerca del límite teórico que es de un 33 %.

    Esta combinación permite aumentar la eficiencia, ya que cada material absorbe ondas de luz a diferentes longitudes; el silicio absorbe en el rojo y en el infrarrojo y la perovskita mayoritariamente en el verde, azul y ultravioleta. Por eso, su combinación hace que se aproveche prácticamente toda la radiación solar que llega a la Tierra desde el Sol.

    Actualmente los paneles solares comerciales, que cada vez se ven más en los tejados de nuestras casas, están basados en silicio cristalino o arseniuro de galio, que tienen un precio elevado. Siguen predominando estos materiales porque el escalado industrial de las células solares de perovskita (para la producción de paneles solares) todavía no está desarrollado plenamente.

    No obstante, las células solares de perovskita van a desempeñar un papel crucial en el necesario cambio energético al que se enfrenta actualmente la sociedad.

    Fuente:  Eva Mª Barea Berzosa Profesora de Física, Universitat Jaume I 

  • Las nucleares son una fuente limpia de energía, pero son inviables en España

    La fuerza nuclear es muy intensa, unas 140 veces mayor que la eléctrica. Y esta es alrededor de cien trillones de veces más intensa que la fuerza de la gravedad, que nos genera un buen golpe si caemos desde lo alto de una escalera de mano de una altura de un par de metros.

    Esas fuerzas enlazan entre sí los protones y neutrones de los átomos, dando estabilidad a la materia. Pero los protones están cargados positivamente, de manera que se repelen. Llega un momento, cuando juntamos muchos de ellos, que los neutrones que funcionan de pegamento de los núcleos atómicos ya no pueden mantenerlos unidos, y esos núcleos se desgarran liberando la fuerza nuclear, que produce un trabajo físico equivalente a una inmensa energía.

    Ahora bien, así como las fuerzas eléctricas pueden ser manipuladas con mucha facilidad, las fuerzas nucleares son esencialmente aleatorias. Por eso, para liberar su energía solo podemos juntar entre sí muchos átomos de núcleos inestables de manera que los neutrones liberados en un núcleo estimulen a otros núcleos a romperse, a fisionarse. Se produce entonces una reacción en cadena que, si se deja correr, produce una bomba atómica y, si se controla, un reactor atómico que libera enormes cantidades de energía en forma de calor.

    Y ahí está el problema de la energía nuclear controlada: el calor producido por la rotura de los núcleos, por la fisión. Es curioso que una tecnología del siglo XX funcione como una locomotora de principios del siglo XIX: produce energía útil calentando agua cuyo vapor mueve turbinas.

    Los problemas de las centrales nucleares

    Aunque hay muchos tipos de centrales nucleares, las que se han establecido como viables son aquellas que tienen cerca del reactor una torre enorme en forma de superficie hiperbólica. En ella, el agua que ha capturado el calor de la fisión se desliza por las paredes, vaporizándose y liberando ese calor a la atmósfera.

    El problema de las centrales nucleares es su refrigeración. Esta debe hacerse con fluidos neutros, abundantes y baratos, porque se necesitan inmensas cantidades, y se precisa que no contaminen el ambiente en el que se encuentra la central. Esencialmente, el agua. Las fuerzas nucleares son objeto de investigación de alta sofisticación en la física, pero para su uso práctico funcionan como el carbón.

    No producen gas carbónico (CO₂) pero generan una considerable cantidad de residuos que siguen siendo inestables, es decir, que emiten alguna de las partículas alfa (dos protones con dos neutrones), beta (electrones) o rayos gamma. Estas partículas y rayos son muy energéticos y, al actuar sobre los tejidos animales, los modifican, produciendo o muerte directa o cambios en las células que pueden dar lugar a cáncer.

    Así, la energía nuclear, que no produce cambio climático, y no es cara en su operación, es contaminante en su acción sobre la vida y precisa de mucha agua para su funcionamiento. Y aquí aparecen de forma muy clara los dos problemas que existen para su utilización generalizada.

    El miedo a un accidente

    Como acabamos de ver en estos meses de pandemia, producida por uno de los innumerables virus que rodean nuestras vidas, los seres humanos reaccionamos de manera irracional, de manera visceral ante los ataques a la vida. El virus SARS-CoV-2 ha matado a muchas personas pero, si se mira en perspectiva, no son tantas. En España han muerto hasta la fecha cerca de 100 000 personas, de un colectivo de 47 millones: un 0,21 %. La mortalidad (sobre todo infantil) en las sociedades humanas antes de 1800 podía estar en un 10 %.

    La energía nuclear de uso civil ha causado un número casi inapreciable de muertes en un número minúsculo de accidentes. Pero las imágenes de las bombas atómicas (más bien nucleares) en Japón y las explosiones de prueba en las islas del Pacífico, así como un cierto número de películas sobre el tema, han introducido en las mentes humanas un miedo irracional a esa energía.

    Ahora bien, el miedo es totalmente justificado si las cosas se hacen mal. Un reactor nuclear civil no puede explotar como una bomba atómica, pero sí puede fundirse y liberar muchas sustancias radiactivas. Esto exige que las centrales se diseñen con altísimas medidas de seguridad, lo que hace que el tiempo de diseño y construcción de una central de un gigavatio sea de unos 10 años, resultando así muy cara: unos 10 000 millones de euros. ¿Quién va a invertir esas cantidades teniendo en cuenta el rechazo social?

    El miedo hace que no se puedan instalar centrales cerca de núcleos de población: en un mundo cada vez más lleno de personas, quedan pocos lugares con agua donde emplazarlas.

    El consumo de agua y otros requerimientos

    Las centrales nucleares exigen una enorme cantidad de agua, y agua garantizada todo el año para su refrigeración. Eso quiere decir que en un país estepario, como es España, no hay muchos lugares donde construirlas.

    Además, las centrales exigen zonas sin riesgo sísmico: no queremos que un terremoto agriete los blindajes que retienen en su interior las partículas radiactivas. Esto elimina gran parte de Andalucía.

    Las centrales nucleares deben construirse en zonas que permitan una evacuación fácil y rápida: esto elimina Galicia y el Cantábrico por su topografía montañosa.

    En las dos mesetas y en el valle del Ebro hay poca agua garantizada todo el año.

    El resultado del precio, el largo tiempo de diseño y construcción y la falta de agua, añadidos al miedo visceral y los bandazos de aceptación y rechazo, hacen que la energía nuclear, que sería ideal para combatir el cambio climático, y para mantener controlado el precio de la electricidad, no pueda considerarse como una alternativa viable hoy por hoy. Y si no es hoy, no sirve para frenar el cambio climático.

    Una central fotovoltaica de 1 gigavatio cuesta alrededor de 1 000 millones de euros. Se puede terminar en un año, no presenta riesgos para la vida humana y no necesita agua. Lo mismo ocurre con una central eólica. Las primeras precisan mucho terreno, pero España está casi vacía. Realmente, con 10 000 km² de centrales fotovoltaicas tendríamos toda la energía que utilizamos en España. Y España tiene alrededor de 500 000 km².

    La respuesta social y empresarial es clara. 

    Fuente:   Catedrático de Física Aplicada, Universidad de Alcalá